94,680 research outputs found

    Robust H∞ control of time-varying systems with stochastic non-linearities: the finite-horizon case

    Get PDF
    The official published version can be obtained from the link below.This paper is concerned with the robust H∞ control problem for the class of uncertain non-linear discrete time-varying stochastic systems with a covariance constraint. All the system parameters are time-varying and the uncertainties enter into the state matrix. The non-linearities under consideration are described by statistical means and they cover several classes of well-studied non-linearities. The purpose of the addressed problem is to design a dynamic output-feedback controller such that, the H∞ disturbance rejection attenuation level is achieved in the finite-horizon case while the state covariance is not more than an individual upper bound at each time point. An algorithm is developed to deal with the addressed problem by means of recursive linear matrix inequalities (RLMIs). It is shown that the robust H∞ control problem is solvable if the series of RLMIs is feasible. An illustrative simulation example is given to show the applicability and effectiveness of the proposed algorithm.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Transmission of Water Waves under Multiple Vertical Thin Plates

    Get PDF
    The transmission of water waves under vertical thin plates, e.g., offshore floating breakwaters, oscillating water column wave energy converters, and so on, is a crucial feature that dominates the hydrodynamic performance of marine devices. In this paper, the analytical solution to the transmission of water waves under multiple 2D vertical thin plates is firstly derived based on the linear potential theory. The influences of relevant parameters on the wave transmission are discussed, which include the number of plates, the draft of plates, the distance between plates and the water depth. The analytical results suggest that the transmission of progressive waves gradually weakens with the growth of the number and draft of plates, and under the conditions of given number and draft of plates, the distribution of plates has significant influence on the transmission of progressive waves. The results of this paper contribute to the understanding of the transmission of water waves under multiple vertical thin plates, as well as the suggestion on optimal design of complex marine devices, such as a floating breakwater with multiple plates

    Isovector Giant Dipole Resonance of Stable Nuclei in a Consistent Relativistic Random Phase Approximation

    Full text link
    A fully consistent relativistic random phase approximation is applied to study the systematic behavior of the isovector giant dipole resonance of nuclei along the β\beta-stability line in order to test the effective Lagrangians recently developed. The centroid energies of response functions of the isovector giant dipole resonance for stable nuclei are compared with the corresponding experimental data and the good agreement is obtained. It is found that the effective Lagrangian with an appropriate nuclear symmetry energy, which can well describe the ground state properties of nuclei, could also reproduce the isovector giant dipole resonance of nuclei along the β\beta-stability line.Comment: 4 pages, 1 Postscript figure, to be submitted to Chin.Phys.Let

    Candidate chiral doublet bands in the odd-odd nucleus 126^{126}Cs

    Full text link
    The candidate chiral doublet bands recently observed in 126^{126}Cs have been extended to higher spins, several new linking transitions between the two partner members of the chiral doublet bands are observed, and γ\gamma-intensities related to the chiral doublet bands are presented by analyzing the γ\gamma-γ\gamma coincidence data collected earlier at the NORDBALL through the 116^{116}Cd((14^{14}N, 4n))126^{126}Cs reaction at a beam energy of 65 MeV. The intraband B(M1)/B(E2)B(M1)/B(E2) and interband B(M1)in/B(M1)outB(M1)_{in}/B(M1)_{out} ratios and the energy staggering parameter, S(I), have been deduced for these doublet bands. The results are found to be consistent with the chiral interpretation for the two structures. Furthermore, the observation of chiral doublet bands in 126^{126}Cs together with those in 124^{124}Cs, 128^{128}Cs, 130^{130}Cs and 132^{132}Cs also indicates that the chiral conditions do not change rapidly with decreasing neutron number in these odd-odd Cesium isotopes
    corecore